Electric fields accelerate cell polarization and bypass myosin action in motility initiation.

نویسندگان

  • Yao-Hui Sun
  • Yuxin Sun
  • Kan Zhu
  • Brian Reid
  • Xing Gao
  • Bruce W Draper
  • Min Zhao
  • Alex Mogilner
چکیده

Stationary symmetrical fish keratocyte cells break symmetry and become motile spontaneously but slowly. We found that applying electric field (EF) accelerates the polarization by an order of magnitude. While spontaneously polarized cells move persistently for hours, the EF-induced polarity is lost in a majority of cells when the EF is switched off. However, if the EF is applied for a long time and then switched off, the majority of cell move stably. Myosin inhibition abolishes spontaneous polarization, but does not slow down EF-induced polarization, and after the EF is turned off, motility does not stop; however, the cell movements are erratic. Our results suggest that the EF rapidly polarizes the cells, but that resulting polarization becomes stable slowly, and that the EF bypasses the requirement for myosin action in motility initiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actin–myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility

We have analyzed the spontaneous symmetry breaking and initiation of actin-based motility in keratocytes (fish epithelial cells). In stationary keratocytes, the actin network flow was inwards and radially symmetric. Immediately before motility initiation, the actin network flow increased at the prospective cell rear and reoriented in the perinuclear region, aligning with the prospective axis of...

متن کامل

Electric field-induced polarization of charged cell surface proteins does not determine the direction of galvanotaxis.

Galvanotaxis, that is, migration induced by DC electric fields, is thought to play a significant role in development and wound healing, however, the mechanisms by which extrinsic electric fields orchestrate intrinsic motility responses are unknown. Using mammalian cell lines (3T3, HeLa, and CHO cells), we tested one prevailing hypothesis, namely, that electric fields polarize charged cell surfa...

متن کامل

Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro.

The effects of uniform steady state (DC) extracellular electric fields on neuronal excitability were characterized in rat hippocampal slices using field, intracellular and voltage-sensitive dye recordings. Small electric fields (</40/ mV mm(-1)), applied parallel to the somato-dendritic axis, induced polarization of CA1 pyramidal cells; the relationship between applied field and induced polariz...

متن کامل

Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro.

BACKGROUND The neocortex is the most common target of subdural electrotherapy and noninvasive brain stimulation modalities, including transcranial magnetic stimulation (TMS) and transcranial current simulation (TCS). Specific neuronal elements targeted by cortical stimulation are considered to underlie therapeutic effects, but the exact cell type(s) affected by these methods remains poorly unde...

متن کامل

Analysis of Electric Field and Polarization of SF6 Circuit Breaker to Approach a Suitable Structure

Abstract: The application of electric field theory to widely different aspects of electrical insulation has led to more understanding the phenomena. Electric fields may be considered as the main reason for insulation failure. The purpose of this paper is to modify importance of analyzing electric field in insulation design. The SF6 circuit breaker is chosen as case study that encounters cri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cellular physiology

دوره 233 3  شماره 

صفحات  -

تاریخ انتشار 2018